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Abstract 13 

 14 

Launched in January 2015, the National Aeronautics and Space Administration (NASA) 15 

Soil Moisture Active Passive (SMAP) observatory was designed to provide frequent global 16 

mapping of high-resolution soil moisture and freeze-thaw state every two to three days 17 

using a radar and a radiometer operating at L-band frequencies.  Despite a hardware 18 

mishap that rendered the radar inoperable shortly after launch, the radiometer continues 19 

to operate nominally, returning more than two years of science data that have helped to 20 

improve existing hydrological applications and foster new ones. 21 

 22 

Beginning in late 2016 the SMAP project launched a suite of new data products with the 23 

objective of recovering some high-resolution observation capability loss resulting from 24 

the radar malfunction.  Among these new data products are the SMAP Enhanced Passive 25 

Soil Moisture Product that was released in December 2016, followed by the 26 

SMAP/Sentinel-1 Active-Passive Soil Moisture Product in April 2017. 27 

 28 

This article covers the development and assessment of the SMAP Level 2 Enhanced 29 

Passive Soil Moisture Product (L2_SM_P_E).  The product distinguishes itself from the 30 

current SMAP Level 2 Passive Soil Moisture Product (L2_SM_P) in that the soil moisture 31 
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retrieval is posted on a 9 km grid instead of a 36 km grid.  This is made possible by first 32 

applying the Backus-Gilbert optimal interpolation technique to the antenna temperature 33 

(TA) data in the original SMAP Level 1B Brightness Temperature Product to take 34 

advantage of the overlapped radiometer footprints on orbit.  The resulting interpolated 35 

TA data then go through various correction/calibration procedures to become the SMAP 36 

Level 1C Enhanced Brightness Temperature Product (L1C_TB_E).  The L1C_TB_E 37 

product, posted on a 9 km grid, is then used as the primary input to the current 38 

operational SMAP baseline soil moisture retrieval algorithm to produce L2_SM_P_E as 39 

the final output.  Images of the new product reveal enhanced visual features that are not 40 

apparent in the standard product.  Based on in situ data from core validation sites and 41 

sparse networks representing different seasons and biomes all over the world, 42 

comparisons between L2_SM_P_E and in situ data were performed for the duration of 43 

April 1, 2015 – October 30, 2016.  It was found that the performance of the enhanced 9 44 

km L2_SM_P_E is equivalent to that of the standard 36 km L2_SM_P, attaining a 45 

retrieval uncertainty below 0.040 m3/m3 unbiased root-mean-square error (ubRMSE) 46 

and a correlation coefficient above 0.800.  This assessment also affirmed that the Single 47 

Channel Algorithm using the V-polarized TB channel (SCA-V) delivered the best retrieval 48 

performance among the various algorithms implemented for L2_SM_P_E, a result 49 

similar to a previous assessment for L2_SM_P. 50 

 51 

Keywords: SMAP; enhanced; soil moisture; passive; retrieval; validation; assessment 52 

 53 

1. Introduction 54 

 55 
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The synergy of active (radar) and passive (radiometer) technologies at L-band microwave 56 

frequencies in the National Aeronautics and Space Administration (NASA) Soil Moisture 57 

Active Passive (SMAP) mission provides a unique remote sensing opportunity to measure 58 

soil moisture with unprecedented accuracy, resolution, and coverage (Entekhabi, et al., 59 

2014).  Driven by the needs in hydroclimatological and hydrometeorological applications, 60 

the SMAP observatory was designed to meet a soil moisture retrieval accuracy 61 

requirement of 0.040 m3/m3 unbiased root-mean-square error (ubRMSE) or better at a 62 

spatial resolution of 10 km over non-frozen land surfaces that are free of excessive snow, 63 

ice, and dense vegetation coverage (Entekhabi, et al., 2014). 64 

In July 2015, SMAP’s radar stopped working due to an irrecoverable hardware 65 

failure, leaving the radiometer as the only operational instrument onboard the 66 

observatory.  Since the beginning of science data acquisition in April 2015, the radiometer 67 

has been collecting L-band (1.41 GHz) brightness temperature (TB) data at a spatial 68 

resolution of 36 km, providing global coverage every two to three days.  The relatively 69 

high fidelity of the data provided by the radiometer’s radio-frequency-interference (RFI) 70 

mitigation hardware (Piepmeier, et al., 2015; Mohammed, et al., 2016), along with the 71 

observatory’s full 360-degree view that offers both fore- and aft-looking observations, 72 

presents unique advantages for SMAP data to advance established hydrological 73 

applications (Koster, et al., 2016) and foster new ones (Yueh, et al., 2016). 74 

 75 

Despite the loss of the radar, SMAP is committed to providing high-resolution 76 

observations to the extent that is possible.  This initiative of acquiring high-resolution 77 

information proceeds in two distinct approaches.  The first approach involves combining 78 

the current SMAP coarse-resolution passive observations with high-resolution radar 79 
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observations from other satellites in space to produce an operational soil moisture 80 

product similar to the now discontinued SMAP Level 2 Active-Passive Soil Moisture 81 

Product (L2_SM_AP).  To attain this objective, the high-resolution synthetic aperture 82 

radar (SAR) data from the European Space Agency (ESA) Sentinel-1 C-band radar 83 

constellation (Torres, et al., 2012) represent the most optimal candidate data source that 84 

would provide partial fulfillment of the original science benefits of L2_SM_AP.  Although 85 

there are technical challenges due to data latency, global coverage, revisit frequency, and 86 

retrieval performance from such a combined L/C-band SMAP/Sentinel-1 soil moisture 87 

product, these challenges are expected to be mitigated over time under the close 88 

collaboration between the two mission teams.  The resulting SMAP/Sentinel-1 Level 2 89 

Active-Passive Product (L2_SM_SP) will be available to the public in April 2017. 90 

The second approach is based on the application of the Backus-Gilbert (BG) optimal 91 

interpolation technique (Poe, 1990; Stogryn, 1978) to the antenna temperature (TA) 92 

measurements in the original SMAP Level 1B Brightness Temperature Product (L1B_TB) 93 

(Piepmeier, et al., 2015a; 2015b).  The resulting interpolated TA data then go through the 94 

standard correction/calibration procedures to produce the SMAP Level 1C Enhanced 95 

Brightness Temperature Product (L1C_TB_E) on a set of 9 km grids (Chaubell, et al., 96 

2016).  The objective of the BG interpolation as implemented by SMAP is to achieve 97 

optimal brightness temperature (TB) estimates at arbitrary locations as if original 98 

observations were available at the same locations (Poe, 1990).  This estimation is achieved 99 

by linearly combining optimally weighted radiometric measurements overlapped in both 100 

along- and across-scan directions.  The BG procedure is an improvement over what the 101 

current SMAP Level 1C Brightness Temperature Product (L1C_TB) (Chan et al., 2014, 102 

2015) offers, in that it makes explicit use of antenna pattern information and finer grid 103 
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posting to more fully capture the high spatial frequency information in the original 104 

oversampled radiometer measurements in the along-scan direction (Chaubell, 2016).  It 105 

is important to note that this recovery of high spatial frequency information as 106 

implemented in this approach primarily comes from interpolation instead of beam 107 

sharpening.  As such, the native resolution of the interpolated data remains to be about 108 

the same as the spatial extent projected on earth surface by the 3-dB beamwidth of the 109 

radiometer.  For SMAP, this spatial extent is roughly an ellipse with 36 km as its minor 110 

axis and 47 km as its major axis (Entekhabi, et al., 2014).  As the SMAP project adopted 111 

the square root of footprint area as the definition of native resolution of the radiometer, 112 

the corresponding native resolution is estimated to be (π/4 × 36 × 47)1/2 ~ 36 km.  The 113 

resulting L1C_TB_E data are posted on the EASE Grid 2.0 projection (Brodzik, et al., 114 

2012, 2014) at a grid spacing of 9 km, even though the data actually exhibit a native 115 

resolution of ~36 km.  The L1C_TB_E product is then used as the primary input in 116 

subsequent passive geophysical inversion to produce the SMAP Level 2 Enhanced Passive 117 

Soil Moisture Product (L2_SM_P_E) (O’Neill, et al., 2016), which is the focus of this 118 

paper. 119 

The retrieval performance of L2_SM_P_E was assessed and reported in this paper 120 

using more than 1.5 years (April 1, 2015 – October 30, 2016) of in situ data from core 121 

validation sites (CVSs) and sparse networks representing different seasons and biomes 122 

all over the world.  The assessment findings presented in this paper represent a significant 123 

extension of the work reported in (Chan, et al., 2016).  Additional metric statistics from 124 

this assessment can be found in a separate report that covers the standard and enhanced 125 

passive soil moisture products (Jackson, et al., 2016). 126 

 127 
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2. Product Development 128 

 129 

The SMAP observatory was to present a unique opportunity to demonstrate the synergy 130 

of radar and radiometer observations at L-band frequencies in the remote sensing of soil 131 

moisture and freeze/thaw state detection from space.  Unfortunately, this demonstration 132 

was shortened due to a hardware failure that eventually halted the operation of the radar 133 

after about three months of operation.  While the loss necessarily ended the operational 134 

production of several key soil moisture and freeze/thaw data products that rely on the 135 

high-resolution radar data, it also spurred the development of several new data products 136 

designed to recover as much high-resolution information as possible. 137 

Table 1 shows a list of SMAP data products that are or will be in routine operational 138 

production.  There are two main groups of data products in the table: enhanced products 139 

(with asterisks) and standard products (without asterisks).  The standard products are 140 

those that have been available since the beginning of the mission and will continue to be 141 

available operationally.  The enhanced products, on the other hand, represent new 142 

products developed after the loss of the SMAP radar; these products contain enhanced 143 

information derived from the existing radiometer observations or new external data from 144 

other satellites.  For example, the L2_SM_SP product is a product derived from the 145 

SMAP’s L-band radiometer observations and the Sentinel-1’s C-band SAR data (Torres, 146 

et al., 2012).  This product will be available to the public in April 2017.  Other enhanced 147 

products (L1C_TB_E L2_SM_P_E, L3_SM_P_E, L3_FT_P, and L3_FT_P_E) are 148 

derived primarily from the existing radiometer observations.  These products have been 149 

available to the public since December 2016.  Of these radiometer-only enhanced 150 

products, L1C_TB_E and L2_SM_P_E will be covered in greater detail in Sections 2.1 151 
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and 2.2, respectively.  A more comprehensive list of SMAP data products, including those 152 

that have been discontinued, can be found in Entekhabi, et al., 2014. 153 

 154 

Table 1: SMAP data products that are or will be in routine operational production. 155 

 156 

Product Description 
Grid 

Resolution 
Latency 

L1A_Radiometer Radiometer telemetry in time order N\A 12 hrs 

L1B_TB Radiometer time-ordered TB N\A 12 hrs 

L1C_TB Radiometer gridded TB 36 km 12 hrs 

L1C_TB_E * Radiometer gridded TB (enhanced) 9 km 12 hrs 

L2_SM_P Soil moisture (radiometer) 36 km 24 hrs 

L2_SM_P_E * Soil moisture (radiometer, enhanced) 9 km 24 hrs 

L2_SM_SP * 
Soil moisture (radiometer + Sentinel-1 
radar) 

3 km 
Best 

effort 

L3_FT_P * Freeze/thaw state (radiometer) 36 km 50 hrs 

L3_FT_P_E * 
Freeze/thaw state (radiometer, 
enhanced) 

9 km 50 hrs 

L3_SM_P Soil moisture (radiometer) 36 km 50 hrs 

L3_SM_P_E * Soil moisture (radiometer, enhanced) 9 km 50 hrs 

L4_SM Soil moisture (surface and root zone) 9 km 7 days 

L4_C Carbon net ecosystem exchange (NEE) 9 km 14 days 

 157 

2.1 Enhanced Brightness Temperature 158 

 159 

Passive soil moisture inversion begins with TB observations.  For SMAP, to more fully 160 

capture the information in the oversampled along-scan TB observations, the BG 161 

interpolation technique is applied to the TA measurements in the standard L1B_TB 162 

product in the SMAP’s Science Data System (SDS).  The resulting interpolated TA data 163 

then go through the standard correction/calibration procedures to produce the 164 
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L1C_TB_E product.  The BG implementation in SDS follows the same approach described 165 

in (Poe, 1990) that makes use of antenna pattern information to produce TB estimates at 166 

arbitrary sampling locations.  The procedure is considered optimal in the sense that its 167 

estimates are supposed to minimize differences relative to what would have been 168 

measured had the instrument actually sampled at the same locations.  For immediate 169 

application to soil moisture and freeze/thaw state detection in SMAP product production, 170 

the TB values in L1C_TB_E are posted on the 9 km EASE Grid 2.0 in global cylindrical 171 

projection, north polar projection, and south polar projection.  Only the TB values on 172 

global projection are used in passive soil moisture inversion.  A more in-depth account of 173 

the theory behind the BG implementation in SDS can be found in the Algorithm 174 

Theoretical Basis Document (ATBD) (Chaubell, 2016) and Assessment Report (Piepmeier, 175 

et al., 2016) that accompany the product.  Besides the ATBD, the Product Specification 176 

Document (PSD) (Chan and Dunbar, 2016) is also available on the NASA Distributed 177 

Active Archive Center (DAAC) at the National Snow and Ice Data Center (NSIDC) for 178 

informed applications of the product. 179 

Figure 1 illustrates the horizontally polarized TB observations obtained by SMAP 180 

between December 15–17, 2016 over the Amazon basin before and after the application 181 

of BG interpolation.  This area was selected because the domain features well-defined 182 

river tracks punctuated with highly visible fine-scale spatial structures in the midst of a 183 

relatively homogeneous background.  It is clear from the comparison that the enhanced 184 

L1C_TB_E (Fig. 1a) is able to reveal spatial features that are concealed or not immediately 185 

obvious in the standard L1C_TB (Fig. 1b).  Overall, the L1C_TB_E image also presents a 186 

less pixelated representation of the original TB data due to its posting on a finer grid. 187 

 188 
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(a) 

 

(b) 

 189 

Figure 1: SMAP horizontally polarized TB observations obtained between 190 

December 15–17, 2016 over the Amazon basin: (a) L1C_TB_E and (b) 191 

L1C_TB.. 192 

 193 

It is important to note that the improvement in L1C_TB_E image quality primarily 194 

comes from an interpolation scheme that is an improvement over what is used in the 195 

standard product.  The interpolation in L1C_TB_E more fully captures the information 196 

from the oversampled along-scan TB observations without degrading the native resolution 197 

of the radiometer.  This aspect regarding the native resolution of the product had been 198 

extensively vetted during product development in a series of matchup analyses using the 199 

original time-ordered L1B_TB TB data points as the benchmark data set.  The matchup 200 

analyses began with collocating pairs of L1C_TB_E TB data points and L1B_TB TB data 201 

points that are within a small distance from each other (< 2 km, which is less than the 202 

L1B_TB geolocation error allocation (Piepmeier, et al., 2015)).  The collocated pairs were 203 

stored separately for ascending and descending passes, and also for fore- and aft-looking 204 

observations to minimize azimuthal mismatch.  The collocated data pairs from these four 205 

matchup collections (i.e., ascending/fore, ascending/aft, descending/fore, and 206 

descending/aft) were then averaged over all orbits between April 1, 2015 and October 30, 207 
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2016 for all grid cells in the 9 km global EASE Grid 2.0 projection.  Even though the 208 

L1C_TB_E data values are posted on a grid, they are expected to be almost identical to 209 

the corresponding L1B_TB data values at the same grid locations due to the close 210 

proximity between the two. 211 

Given their impulse-like radiometric responses, small and isolated islands in the 212 

ocean provide ideal locations to compare the native resolution of L1C_TB_E against the 213 

known native resolution of L1B_TB using the collocated data pairs described above.  This 214 

approach of using discrete islands to evaluate data native resolution has been extensively 215 

explored in the study of resolution-enhanced scatterometer data (Bradley and Long, 216 

2014).  Figure 2 describes one such comparison performed over Ascension Island 217 

(7.93ºS,14.417ºW) located approximately midway between the coasts of Brazil and Africa 218 

in the South Atlantic Ocean.  The island is about 10.07 km across and exhibits near 219 

azimuthal symmetry.  Based on the peak values of L1C_TB_E (Fig. 2a) and L1B_TB (Fig. 220 

2b), contours that correspond to one half of their respective peak values were estimated 221 

around the island.  These 3-dB contours, which are indicative of the native resolution of 222 

the underlying data, are depicted by the blue lines in the figures.  The magenta lines in 223 

both figures are identical; they correspond to the 3-dB contours estimated based on the 224 

geometry of the projected instantaneous field-of-view (IFOV) of the radiometer.  The 225 

good agreement in 3-dB contour estimation between radiometric estimation (blue lines) 226 

and geometric calculation (magenta lines) confirms that small and isolated islands such 227 

as Ascension Island can indeed provide a good approximation for the impulse response 228 

from a point target. 229 

 230 
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(a) 

 

(b) 

 231 

Figure 2: Comparison of data native resolution between L1C_TB_E and 232 

L1B_TB based on radiometric estimation (blue lines) and geometric 233 

calculation (magenta lines): (a) L1C_TB_E and (b) L1B_TB. 234 

 235 

The comparison shows that after BG interpolation the 3-dB contour of L1C_TB_E in Fig. 236 

2a is about the same size as the 3-dB contour of L1B_TB in Fig. 2b, confirming that the 237 

enhanced product preserves the native resolution and noise characteristics of the 238 

radiometer while providing an optimal interpolation approach that more fully utilizes the 239 

oversampled along-scan TB measurements in the original data.  Further analyses on other 240 

small and isolated islands yielded the same conclusions.  The TB signatures between 241 

L1C_TB_E in Fig. 2a and L1B_TB in Fig. 2b are similar, suggesting that the current BG 242 

implementation indeed preserves the original data at locations where L1B_TB 243 

measurements are available. 244 

 245 

The native resolution of L1C_TB_E determines the spatial scale by which the 246 

subsequent L2_SM_P_E should be developed and assessed.  It was found that when 3 247 
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km ancillary data (Table 2) are aggregated as inputs to L2_SM_P_E that is posted on a 9 248 

km grid, a contributing domain of 33 km × 33 km (Section 3.1) is necessary to cover a 249 

spatial extent similar to the native resolution of the radiometer, as shown in Fig. 3.  This 250 

contributing domain was thus adopted in L2_SM_P_E product development (Section 2.2) 251 

and assessment (Section 3). 252 

 253 

 254 

 255 

Figure 3: With L2_SM_P_E (black) and ancillary data (gray) posted at 9 256 

km and 3 km, respectively, a contributing domain of 33 km × 33 km (red) is 257 

necessary to cover a spatial extent similar to the native resolution (blue) of 258 

the radiometer. 259 

 260 

It is anticipated that future SDS BG implementations could improve the current 261 

L1C_TB_E native resolution beyond the radiometer IFOV.  Such an improvement will 262 

require an alternate contributing domain that approximates the new native resolution in 263 

revised L2_SM_P_E development and assessment. 264 

 265 



 15 

2.2 Enhanced Passive Soil Moisture 266 

 267 

The development of L2_SM_P_E follows a close parallel with that of L2_SM_P (Chan, et 268 

al., 2016; O’Neill, et al., 2015).  Both products share the same basic implementation 269 

elements, ranging from processing flow, ancillary data, and retrieval algorithms.  Figure 270 

4 illustrates the flow of the L2_SM_P_E processor.  The fore- and aft-look TB 271 

observations in L1C_TB_E are first combined to provide the primary input to the 272 

processor.  Static and dynamic ancillary data (Table 2) preprocessed on finer grid 273 

resolutions are then brought into the processing to evaluate the feasibility of the retrieval.  274 

If retrieval is deemed feasible at a given location, the processor will further evaluate the 275 

quality of the retrieval.  When surface conditions favorable to soil moisture retrieval are 276 

identified, corrections for surface roughness, effective soil temperature, vegetation water 277 

content, and radiometric contribution by water bodies are applied.  The baseline soil 278 

moisture retrieval algorithm is then invoked with TB observations and ancillary data as 279 

inputs to produce L2_SM_P_E on the same 9 km EASE Grid 2.0 global projection as the 280 

input L1C_TB_E.  A full description of L2_SM_P_E data contents can be found in the 281 

Product Specification Document (Chan, 2016). 282 

 283 
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 284 

 285 

Figure 4: L2_SM_P_E processor design.  The processor uses L1C_TB_E 286 

and ancillary data as primary inputs to perform geophysical inversion under 287 

favorable surface conditions.  The resulting L2_SM_P_E soil moisture 288 

estimates are posted on the same 9 km EASE Grid 2.0 global projection as 289 

the input L1C_TB_E. 290 

 291 

Table 2: Ancillary data used in L2_SM_P_E and L2_SM_P processing. 292 

 293 

Ancillary Data 
Grid 

Resolution 
Time 

Resolution 
Primary Data Source 

Water fraction 3 km Static MODIS MOD44W (Chan, 2013) 

Urban fraction 3 km Static 
Global Rural Urban Mapping Project (GRUMP) 

(Das, 2013) 

DEM slope variability 3 km Static USGS GMTED 2010 (Podest and Crow, 2013) 

Soil texture 3 km Static 
FAO Harmonized World Soil Database (HWSD) 

(Das, 2013) 

Land cover 3 km Static MODIS MCD12Q1 (V051) (Kim, 2013) 

NDVI 3 km 2000–2013 MODIS MOD13A2 (V005) (Chan, 2013) 

Snow fraction 9 km Daily NOAA IMS (Kim, 2011) 

Freeze/thaw fraction 9 km 1 hourly GMAO GEOS-5 (SMAP, 2015) 
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Soil temperatures 9 km 1 hourly GMAO GEOS-5 (SMAP, 2015) 

Precipitation 9 km 3 hourly GMAO GEOS-5 (Dunbar, 2013) 

 294 

Because of its improved representation of the original TB data, the enhanced 9 km 295 

L1C_TB_E product contains additional spatial information that is not available in the 296 

standard 36 km L1C_TB product, as exemplified in a series of spectral analysis on small 297 

and isolated islands in the ocean (Piepmeier, et al., 2016).  When used as the primary 298 

input to the enhanced 9 km L2_SM_P_E product, the additional spatial information 299 

results in enhanced visual details that are also not available in the standard 36 km 300 

L2_SM_P product.  Figure 5 contrasts the amount of visual details between L2_SM_P_E 301 

(Fig. 5a) and L2_SM_P (Fig. 5b) over the vegetation transition region in Africa.  After the 302 

application of the baseline soil moisture retrieval algorithm to L1C_TB_E, the resulting 303 

L2_SM_P_E on a 9 km grid shows a higher acuity compared with L2_SM_P on a 36 km 304 

grid.  This enhancement in spatial details is further illustrated in Fig. 5c in which the soil 305 

moisture variability of L2_SM_P_E (black line) and L2_SM_P (red line) along the two 306 

identical magenta lines in Figs. 5a and 5b is plotted together.  The enhanced and standard 307 

products mostly track each other and follow the same macroscopic spatial patterns along 308 

the transect without obvious bias or unusual artifacts.  In addition, there are locations 309 

(e.g. between column indices 512 and 515 in Fig. 5c) where L2_SM_P_E appears to 310 

capture fine-scale soil moisture variability that is not available in L2_SM_P.  It is 311 

important to note that throughout the L2_SM_P_E processing, no new or additional 312 

ancillary datasets other than those listed in Table 2 are brought into the processing.  The 313 

observed enhanced spatial details revealed in L2_SM_P_E are thus primarily contributed 314 

by the additional spatial information in L1C_TB_E. 315 
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 316 

 

(a) 

 

(b) 

 

(c) 

 317 

Figure 5: Soil moisture estimates in m3/m3 of (a) L2_SM_P_E, (b) 318 

L2_SM_P, and (c) L2_SM_P_E and L2_SM_P along the two identical 319 

magenta lines in (a) and (b). 320 

 321 

On a global scale, the enhanced product exhibits the expected geographical 322 

patterns of soil moisture.  Figure 6 represents a three-day composite of 6:00 am 323 

descending L2_SM_P_E between September 20–22, 2016.  The expected patterns of 324 
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L2_SM_P_E soil moisture estimates in m3/m3 qualitatively affirm the soundness of the 325 

underlying baseline soil moisture retrieval algorithm.  Section 3 covers the quantitative 326 

aspect of the assessment for the product based on comparison with in situ soil moisture 327 

observations. 328 

 329 

 

 

Figure 6: Global pattern of soil moisture estimates in m3/m3 of 330 

L2_SM_P_E based on 6:00 am descending TB data between September 331 

20–22, 2016. 332 

 333 

3. Product Assessment 334 

 335 

The retrieval accuracy of L2_SM_P_E was assessed using the same validation 336 

methodologies for L2_SM_P as reported in (Chan, et al., 2016; Colliander, et al., 2017).  337 

Nineteen months (April 2015 through October 2016) of in situ soil moisture observations 338 

were used as ground truth to evaluate the performance of the product.  Much deliberation 339 

had been made before the SMAP launch in the selection of these in situ data sources based 340 
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on criteria that would ensure data quality, sensor maintenance and calibration stability, 341 

biome diversity, and geographical representativeness.  The in situ data consist of scaled 342 

aggregations of in situ soil moisture observations at a nominal soil depth of 5 cm to mimic 343 

L2_SM_P_E soil moisture estimates at satellite footprint scale.  All in situ data were 344 

provided through a collaboration with domestic and international calibration/validation 345 

(cal/val) partners who operate and maintain calibrated soil moisture measuring sensors 346 

in their core validation sites (CVSs) (Colliander, et al., 2017; Smith, et al., 2012; Yee, et al., 347 

2016) or sparse networks (Chen, et al., 2017). 348 

Agreement between the L2_SM_P_E soil moisture estimates and in situ data over 349 

space and time are reported in four metrics: 1) unbiased root-mean-square error 350 

(ubRMSE), 2) bias (defined as L2_SM_P_E minus in situ data), 3) root-mean-square 351 

error (RMSE), and 4) correlation (R).  Together, these metrics provide a more complete 352 

description of product performance than any one alone (Entekhabi, et al., 2010).  Among 353 

these metrics, however, the ubRMSE computed from in situ data comparison at CVSs is 354 

adopted for reporting the product accuracy of L2_SM_P_E, with an accuracy target of 355 

0.040 m3/m3 that mimics the SMAP Level 1 mission accuracy requirement for the now 356 

discontinued SMAP Level 2 Active-Passive Soil Moisture Product (L2_SM_AP) 357 

(Entekhabi, et al., 2010). 358 

In addition to L2_SM_P_E, the retrieval performance of L2_SM_P and soil 359 

moisture estimates by the Soil Moisture and Ocean Salinity (SMOS) mission (Kerr, et al., 360 

2016) was also provided for comparison.  In this assessment, both L2_SM_P_E and 361 

L2_SM_P were based on version R13080 of the standard L1B_TB product, whereas 362 

versions 551 and 621 of the SMOS Level 2 soil moisture product were used for April 1 - 363 

May 4, 2015 and May 5, 2015 - October 31, 2016, respectively.  For both SMAP and SMOS 364 
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soil moisture data products, only those soil moisture estimates whose retrieval quality 365 

fields indicated good retrieval quality were considered and used in metric calculations.  366 

The selection involved data of recommended quality as indicated in the retrieval quality 367 

flag for the SMAP product, and data with unset FL_NO_PROD and retrieval DQX < 0.07 368 

for the SMOS product. 369 

Compared with L2_SM_P, L2_SM_P_E is expected to exhibit a higher serial 370 

correlation of retrieval uncertainty over space.  This higher correlation is a direct result of 371 

the original L1B_TB interpolated on a finer grid posting (9 km) for L2_SM_P_E than the 372 

original grid posting (36 km) for L2_SM_P.  A full investigation into the spatial 373 

correlation characteristics between the standard and enhanced products is beyond the 374 

scope of this assessment. 375 

 376 

3.1 Core Validation Sites 377 

 378 

Although in general limited in quantity and spatial extent, CVSs provide in situ soil 379 

moisture observations that, when properly scaled and aggregated, provide a 380 

representative spatial average of soil moisture at the spatial scale of L2_SM_P_E (Section 381 

2.1).  In this assessment, CVS in situ data between April 2015 and October 2016 from a 382 

total of 15 global sites were aggregated over a contributing domain of 33 km × 33 km (Fig. 383 

3 in Section 2.1) around the sites.  This area was chosen so that on a 9 km grid the resulting 384 

aggregated ancillary data cover a spatial extent similar to the native resolution of the 385 

radiometer (Section 2.1).  Within this domain, CVS in situ data were scaled and 386 

aggregated to provide the reference soil moisture for comparison.  L2_SM_P_E soil 387 

moisture estimates from 6:00 am descending and 6:00 pm ascending overpasses were 388 
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then extracted to match up in space and time with the corresponding CVS in situ data.  389 

Table 3 lists the CVSs used in the assessment, along with their geographical locations, 390 

climate regimes, and land cover types. 391 

 392 

Table 3: CVSs used in L2_SM_P_E assessment. 393 

 394 

CVS 
(latitude,longitude) 

Location 
Climate 
Regime 

Land Cover Type 

Walnut Gulch 
(31.75°,-110.03°) 

Arizona, USA Arid Shrub open 

Reynolds Creek 
(43.19°,-116.75°) 

Idaho, USA Arid Grasslands 

TxSON 
(30.35°,-98.73°) 

Texas, USA Temperate Grasslands 

Fort Cobb 
(35.38°,-98.64°) 

Oklahoma, USA Temperate Grasslands/Croplands 

Little Washita 
(34.86°,-98.08°) 

Oklahoma, USA Temperate Grasslands 

South Fork 
(42.42°,-93.41°) 

Iowa, USA Cold Croplands 

Little River 
(31.67°,-83.60°) 

Georgia, USA Temperate 
Cropland/natural 

mosaic 

Kenaston 
(51.47°,-106.48°) 

Canada Cold Croplands 

Carman 
(49.60°,-97.98°) 

Canada Cold Croplands 

Monte Buey 
(-32.91°,-62.51°) 

Argentina Arid Croplands 

REMEDHUS 
(41.29°,-5.46°) 

Spain Temperate Croplands 

Twente 
(52.26°,6.77°) 

Netherlands Temperate 
Cropland/natural 

mosaic 

HOBE 
(55.97°,9.10°) 

Denmark Temperate Croplands 

Mongolia 
(46.05°,106.76°) 

Mongolia Cold Grasslands 

Yanco 
(-34.86°,146.16°) 

Australia Arid Croplands 
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 395 

Tables 4 and 5 summarize the performance metrics that characterize the retrieval 396 

performance of the 6:00 am descending and 6:00 pm ascending L2_SM_P_E soil 397 

moisture estimates at CVSs for the baseline and two other candidate soil moisture 398 

retrieval algorithms (SCA-H: Single Channel Algorithm using the H-polarized TB channel 399 

and DCA: Dual Channel Algorithm) (O’Neill, et al., 2015).  Compared with the other two 400 

candidate algorithms, the SCA-V baseline algorithm was able to deliver the best overall 401 

retrieval performance, achieving an average ubRMSE of 0.038 m3/m3 (6:00 am 402 

descending) and 0.039 m3/m3 (6:00 pm ascending) as well as correlation of 0.819 (6:00 403 

am descending) and 0.814 (6:00 pm ascending).  In addition, the 6:00 am estimates were 404 

shown to be in closer agreement with the CVS in situ soil moisture observations than the 405 

6:00 pm estimates.  This asymmetry in performance is particularly noticeable from the 406 

bias metric: -0.015 m3/m3 (6:00 am descending) vs. -0.027 m3/m3 (6:00 pm ascending).  407 

The overall dry bias is likely due to the inadequate depth correction for the GMAO 408 

ancillary surface temperatures (Table 2) used to account for the difference between the 409 

model soil depth and the actual physical sensing soil depth at L-band frequency, although 410 

other algorithm assumptions which are more likely to be true at 6:00 am than at 6:00 pm 411 

could also contribute to the overall asymmetry in performance.  Further refinements in 412 

the correction procedure for the effective soil temperature described in (Chan, et al., 2016; 413 
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Choudhury et al., 1982) are expected to improve the observed biases and reduce the performance gap between the 6:00 am 414 

and 6:00 pm soil moisture estimates in future updates of the product.  Both L2_SM_P_E and L2_SM_P displayed similar 415 

retrieval performance when assessed at effectively the same spatial scale. 416 

 417 

Table 4: Comparison between the 6:00 am descending L2_SM_P_E soil moisture estimates and CVS in situ 418 

soil moisture observations between April 2015 and October 2016. 419 

 420 

CVS 
ubRMSE (m3/m3) Bias (m3/m3) RMSE (m3/m3) Correlation (R) N 

SCA-H SCA-V DCA SCA-H SCA-V DCA SCA-H SCA-V DCA SCA-H SCA-V DCA SCA-H SCA-V DCA 

Reynolds Creek 0.039 0.040 0.057 -0.059 -0.023  0.007 0.071 0.046 0.058 0.572 0.598 0.558 86 97 96 

Walnut Gulch 0.021 0.024 0.038 -0.011  0.011  0.035 0.024 0.026 0.052 0.759 0.813 0.800 93 118 115 

TxSON 0.031 0.032 0.041 -0.064 -0.015  0.056 0.071 0.036 0.069 0.935 0.921 0.827 153 153 152 

Fort Cobb 0.032 0.028 0.045 -0.086 -0.056 -0.017 0.091 0.062 0.048 0.858 0.883 0.817 244 247 247 

Little Washita 0.023 0.022 0.042 -0.062 -0.027  0.026 0.066 0.035 0.050 0.911 0.920 0.837 246 246 245 

South Fork 0.062 0.054 0.054 -0.071 -0.062 -0.050 0.094 0.082 0.074 0.597 0.646 0.637 159 162 162 

Little River 0.034 0.028 0.041  0.048  0.087  0.144 0.059 0.092 0.150 0.871 0.887 0.755 229 229 229 

Kenaston 0.034 0.022 0.040 -0.064 -0.040 -0.001 0.072 0.046 0.040 0.808 0.854 0.515 145 145 145 

Carman 0.094 0.056 0.053 -0.087 -0.088 -0.077 0.128 0.104 0.093 0.463 0.611 0.535 157 158 158 

Monte Buey 0.075 0.051 0.042 -0.022 -0.020 -0.025 0.078 0.055 0.049 0.754 0.840 0.724 126 135 137 

REMEDHUS 0.037 0.042 0.054 -0.024 -0.007  0.010 0.044 0.042 0.055 0.897 0.872 0.837 197 196 189 

Twente 0.072 0.056 0.056  0.003  0.013  0.028 0.072 0.057 0.063 0.888 0.885 0.784 238 242 241 

HOBE 0.048 0.036 0.063  0.004 -0.009 -0.012 0.048 0.037 0.064 0.700 0.863 0.789 104 104 104 

Mongolia 0.032 0.036 0.036 -0.009 -0.006 -0.006 0.033 0.037 0.037 0.736 0.728 0.730 139 102 116 

Yanco 0.051 0.043 0.045  0.000  0.020  0.035 0.051 0.048 0.057 0.960 0.964 0.943 170 172 170 

L2_SM_P_E 
over a 33 km × 33 km 
contributing domain 

0.046 0.038 0.047 -0.034 -0.015  0.010 0.067 0.054 0.064 0.781 0.819 0.739  

L2 SMOS averaged 0.051 -0.023 0.071 0.698  
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over a 33 km × 33 km 
contributing domain 

L2_SM_P 
over a 36 km × 36 km 
contributing domain 

0.044 0.037 0.043 -0.033 -0.014  0.010 0.065 0.052 0.063 0.796 0.822 0.738  

L2 SMOS averaged 
over a 36 km × 36 km 
contributing domain 

0.051 -0.024 0.072 0.713  

 421 

Table 5: Comparison between the 6:00 pm ascending L2_SM_P_E soil moisture estimates and CVS in situ 422 

soil moisture observations between April 2015 and October 2016. 423 

 424 

CVS 
ubRMSE (m3/m3) Bias (m3/m3) RMSE (m3/m3) Correlation (R) N 

SCA-H SCA-V DCA SCA-H SCA-V DCA SCA-H SCA-V DCA SCA-H SCA-V DCA SCA-H SCA-V DCA 

Reynolds Creek 0.046 0.042 0.060 -0.075 -0.042 -0.005 0.088 0.059 0.060 0.452 0.651 0.630 79 106 96 

Walnut Gulch 0.027 0.029 0.042 -0.031 -0.019 -0.000 0.041 0.034 0.042 0.622 0.676 0.631 102 165 141 

TxSON 0.028 0.028 0.033 -0.058 -0.018  0.031 0.065 0.034 0.045 0.930 0.929 0.893 178 178 178 

Fort Cobb 0.039 0.035 0.046 -0.087 -0.069 -0.046 0.096 0.077 0.065 0.811 0.846 0.778 240 251 245 

Little Washita 0.027 0.026 0.042 -0.057 -0.032  0.000 0.063 0.041 0.042 0.909 0.910 0.835 259 259 258 

South Fork 0.053 0.045 0.061 -0.084 -0.087 -0.074 0.099 0.098 0.095 0.710 0.764 0.668 172 171 171 

Little River 0.036 0.029 0.041  0.050  0.078  0.115 0.062 0.083 0.122 0.885 0.872 0.683 193 193 193 

Kenaston 0.033 0.027 0.052 -0.065 -0.051 -0.024 0.073 0.057 0.057 0.833 0.828 0.515 186 186 186 

Carman 0.087 0.049 0.051 -0.102 -0.109 -0.101 0.134 0.120 0.113 0.406 0.594 0.505 161 162 162 

Monte Buey 0.075 0.052 0.046  0.007 -0.019 -0.050 0.075 0.056 0.067 0.848 0.874 0.722 107 113 113 

REMEDHUS 0.041 0.045 0.055 -0.029 -0.018  0.006 0.050 0.048 0.056 0.856 0.857 0.781 168 184 156 

Twente 0.068 0.052 0.051  0.006  0.001 -0.001 0.069 0.052 0.051 0.897 0.903 0.834 272 274 274 

HOBE 0.046 0.042 0.069  0.003 -0.013 -0.019 0.046 0.044 0.071 0.711 0.844 0.811 106 106 106 

Mongolia 0.032 0.038 0.037 -0.017 -0.018 -0.017 0.036 0.042 0.041 0.747 0.700 0.706 110 79 82 

Yanco 0.060 0.053 0.052  0.004  0.011  0.013 0.060 0.054 0.054 0.966 0.966 0.940 201 203 199 

L2_SM_P_E 
over a 33 km × 33 km 
contributing domain 

0.047 0.039 0.049 -0.036 -0.027 -0.011 0.070 0.060 0.066 0.772 0.814 0.729  
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L2 SMOS averaged 
over a 33 km × 33 km 
contributing domain 

0.052 -0.029 0.071 0.721  

L2_SM_P 
over a 36 km × 36 km 
contributing domain 

0.046 0.039 0.047 -0.037 -0.028 -0.015 0.071 0.061 0.066 0.772 0.795 0.700  

L2 SMOS averaged 
over a 36 km × 36 km 
contributing domain 

0.053 -0.028 0.072 0.710  

425 
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 426 

As an alternate way to present a subset of the tabulated data in Table 4, Fig. 7 shows the 427 

time series of L2_SM_P_E at two sample CVSs with low-to-moderate amounts of 428 

vegetation.  In both sites the soil moisture estimates of L2_SM_P_E tracked the observed 429 

dry-down soil moisture trends very well. 430 

 431 

 

(a) Descending L2_SM_P_E at Little Washita, OK: ubRMSE = 0.022 m3/m3, bias = 

−0.027 m3/m3, R = 0.920 

 

(b) Descending L2_SM_P_E at Walnut Gulch, AZ: ubRMSE = 0.024 m3/m3, bias = 

0.011 m3/m3, R = 0.813 

 432 

Figure 7: Soil moisture time series at (a) Little Washita, OK; and (b) Walnut 433 

Gulch, AZ between April 2015 and October 2016.  In situ soil moisture data 434 

are in magenta, and precipitation data are in blue. Legends: SCA-V (black 435 

♢), SCA-H (blue ×) DCA (green +), and SMOS (orange □), unattempted 436 

retrievals (cyan), and failed retrievals (bright green). 437 

 438 
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3.2 Sparse Networks 439 

 440 

The sparse networks represent another valuable in situ data source contributing to SMAP 441 

soil moisture assessment.  The defining feature of these networks is that their 442 

measurement density is low, usually resulting in (at most) one point within a SMAP 443 

radiometer footprint.  Although the resulting data alone cannot always provide a 444 

representative spatial average of soil moisture at the spatial scale of L2_SM_P_E (Section 445 

2.1) the way the CVS in situ data do, they often cover a much larger spatial extent and land 446 

cover diversity with very predictable data latency. 447 

Table 6 lists the set of sparse networks used in this assessment study.  Compared 448 

with (Chan, et al., 2016), two additional sparse networks (the Oklahoma Mesonet and the 449 

MAHASRI network) were available.  The additional data should improve the statistical 450 

representativeness of the assessment.  Tables 7 and 8 summarize the retrieval 451 

performance of the 6:00 am descending and 6:00 pm ascending L2_SM_P_E between 452 

April 2015 and October 2016 for the baseline and the other two candidate soil moisture 453 

retrieval algorithms.  In addition to L2_SM_P_E, the retrieval performance of L2_SM_P 454 

and SMOS soil moisture estimates was also provided for comparison.  Metrics over land 455 

cover classes not represented by any of the sparse networks in Table 6 were not available 456 

and hence not reported. 457 

 458 
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Table 6: Sparse networks used in L2_SM_P_E assessment. 459 

 460 

Sparse Network Region 

NOAA Climate Reference Network (CRN) USA 

USDA NRCS Soil Climate Analysis Network (SCAN) USA 

GPS Western USA 

COSMOS Mostly USA 

SMOSMania Southern France 

Pampas Argentina 

Oklahoma Mesonet Oklahoma, USA 

MAHASRI Mongolia 

461 
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Table 7: Comparison between the 6:00 am descending L2_SM_P_E and in situ soil moisture observations 462 

over sparse networks between April 2015 and October 2016. 463 

 464 

IGBP 
Land Cover Class 

ubRMSE (m3/m3) Bias (m3/m3) RMSE (m3/m3) Correlation (R) 
N 

SCA-H SCA-V DCA SMOS SCA-H SCA-V DCA SMOS SCA-H SCA-V DCA SMOS SCA-H SCA-V DCA SMOS 

Evergreen Needleleaf Forest 0.040 0.039 0.052 0.062 -0.033 0.033 0.166 -0.127 0.052 0.051 0.174 0.141 0.498 0.530 0.515 0.430 1 

Mixed Forest 0.059 0.060 0.068 0.055 -0.037 -0.003 0.045 -0.054 0.070 0.060 0.081 0.077 0.609 0.591 0.541 0.752 1 

Open Shrublands 0.038 0.039 0.050 0.056 -0.041 -0.008 0.032 -0.010 0.063 0.055 0.075 0.068 0.516 0.523 0.513 0.460 38 

Woody Savannas 0.054 0.049 0.061 0.081 -0.017 0.021 0.078 -0.063 0.088 0.080 0.112 0.134 0.709 0.717 0.596 0.541 16 

Savannas 0.032 0.032 0.040 0.044 -0.043 -0.026 -0.016 -0.031 0.063 0.055 0.056 0.059 0.877 0.875 0.869 0.866 3 

Grasslands 0.051 0.051 0.059 0.062 -0.076 -0.042 0.003 -0.049 0.098 0.079 0.080 0.091 0.667 0.675 0.637 0.596 224 

Croplands 0.077 0.066 0.071 0.078 -0.047 -0.033 -0.009 -0.050 0.117 0.101 0.097 0.117 0.569 0.602 0.541 0.553 54 

Cropland / Natural Vegetation Mosaic 0.063 0.056 0.066 0.079 -0.044 -0.015 0.033 -0.124 0.095 0.084 0.101 0.176 0.722 0.761 0.643 0.536 20 

Barren or Sparsely Vegetated 0.018 0.021 0.030 0.032 -0.015 0.006 0.035 0.002 0.034 0.033 0.051 0.040 0.648 0.596 0.522 0.620 6 

L2_SM_P_E 
averaged over 
IGBP classes 

0.054 0.051 0.060 0.065 -0.062 -0.032 0.010 -0.049 0.095 0.079 0.084 0.098 0.642 0.654 0.608 0.572 363 

L2_SM_P 
averaged over 
IGBP classes 

0.053 0.050 0.057 0.066 -0.061 -0.031 0.010 -0.049 0.093 0.077 0.081 0.099 0.643 0.663 0.633 0.576 393 

 465 

Table 8: Comparison between the 6:00 pm ascending L2_SM_P_E and in situ soil moisture observations over 466 

sparse networks between April 2015 and October 2016. 467 

 468 

 ubRMSE (m3/m3) Bias (m3/m3) RMSE (m3/m3) Correlation (R) 
N 

SCA-H SCA-V DCA SMOS SCA-H SCA-V DCA SMOS SCA-H SCA-V DCA SMOS SCA-H SCA-V DCA SMOS 
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Evergreen Needleleaf Forest 0.047 0.046 0.067 0.050 -0.057 0.006 0.115 -0.095 0.074 0.047 0.133 0.107 0.442 0.461 0.429 0.585 1 

Mixed Forest 0.057 0.053 0.051 0.056 -0.040 -0.011 0.029 -0.047 0.070 0.054 0.059 0.073 0.687 0.740 0.771 0.753 1 

Open Shrublands 0.040 0.042 0.053 0.057 -0.051 -0.022 0.009 -0.005 0.070 0.058 0.067 0.071 0.485 0.468 0.441 0.421 39 

Woody Savannas 0.051 0.047 0.058 0.080 -0.012 0.015 0.053 -0.045 0.086 0.079 0.098 0.114 0.745 0.750 0.625 0.584 16 

Savannas 0.033 0.035 0.040 0.047 -0.043 -0.034 -0.029 -0.023 0.063 0.058 0.058 0.073 0.890 0.871 0.861 0.841 3 

Grasslands 0.051 0.051 0.059 0.062 -0.079 -0.053 -0.020 -0.043 0.101 0.085 0.082 0.088 0.663 0.667 0.632 0.609 224 

Croplands 0.075 0.065 0.070 0.076 -0.037 -0.037 -0.030 -0.047 0.117 0.103 0.100 0.111 0.579 0.610 0.560 0.547 54 

Cropland / Natural Vegetation Mosaic 0.061 0.055 0.065 0.079 -0.033 -0.017 0.009 -0.112 0.089 0.083 0.093 0.160 0.723 0.761 0.659 0.544 20 

Barren or Sparsely Vegetated 0.019 0.022 0.031 0.036 -0.022 -0.005 0.018 0.004 0.038 0.035 0.045 0.045 0.577 0.516 0.443 0.453 6 

L2_SM_P_E 
averaged over 
IGBP classes 

0.053 0.051 0.059 0.065 -0.063 -0.041 -0.012 -0.043 0.097 0.083 0.084 0.094 0.639 0.645 0.601 0.575 364 

L2_SM_P 
averaged over 
IGBP classes 

0.053 0.051 0.059 0.065 -0.063 -0.043 -0.016 -0.043 0.097 0.083 0.084 0.095 0.618 0.629 0.595 0.578 394 

469 
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 470 

According to Tables 7 and 8, the agreement between L2_SM_P_E and sparse 471 

network in situ data was not as good as that reported in Tables 4 and 5 with CVS in situ 472 

data.  This is expected because with sparse network in situ data there is an additional 473 

uncertainty when comparing a footprint-scale soil moisture estimate by the satellite with 474 

in situ data that are available at only one sensor location within the networks.  Overall the 475 

performance metrics in Tables 7 and 8 displayed the same trends observed in Tables 4 476 

and 5 with CVS in situ data.  For example, the SCA-V baseline soil moisture retrieval 477 

algorithm was shown to deliver the best overall performance when compared with the 478 

other two candidate algorithms.  In addition, the 6:00 am descending L2_SM_P_E was 479 

shown to be in better agreement with the sparse network in situ data than the 6:00 pm 480 

ascending L2_SM_P_E – a trend also observed in the previous assessment with CVS in 481 

situ data.  This independent convergence of metric patterns in both CVS and sparse 482 

network assessments provides additional confidence in the statistical consistency 483 

between these two validation methodologies that differ greatly in the spatial scales that 484 

they represent. 485 

 486 

4. Conclusion 487 

 488 

Following SMOS and Aquarius, SMAP became the third mission in less than a decade 489 

utilizing an L-band radiometer to estimate soil moisture from space.  The sophisticated 490 

RFI mitigation hardware onboard the observatory has enabled acquisition of TB 491 

observations that are relatively well filtered against interferences. 492 

The application of the Backus-Gilbert interpolation technique results in a more 493 
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optimal capture of spatial information when the original SMAP Level 1B observations are 494 

represented on a grid.  The resulting gridded TB data – the SMAP Level 1C Enhanced 495 

Brightness Temperature Product (L1C_TB_E) serves as the primary input to the SMAP 496 

Level 2 Enhanced Passive Soil Moisture Product (L2_SM_P_E), resulting in soil moisture 497 

estimates posted on a 9 km grid. 498 

Based on comparison with in situ soil moisture observations from CVSs, it was 499 

found that the SCA-V baseline soil moisture algorithm resulted in the best retrieval 500 

performance compared with the other two candidate algorithms considered in this 501 

assessment.  The ubRMSE, bias, and correlation of the 6:00 am descending baseline soil 502 

moisture estimates were found to be 0.038 m3/m3, -0.015 m3/m3, and 0.819, respectively.  503 

The metrics for the 6:00 pm ascending baseline soil moisture estimates were slightly 504 

worse in comparison but nonetheless similar overall.  It is expected that further 505 

refinements in the correction procedure for the effective soil temperature will improve 506 

the observed biases and reduce the performance gap between the 6:00 am and 6:00 pm 507 

soil moisture estimates in future updates of the product. 508 
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